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Introduction

Our laboratory has been interested in unraveling the cellular and molecular mechanisms
underlying estrogen responses in both normal and neoplastic tissues. Estrogens have
central roles in the control of development, sexual behavior and reproductive functions.
Their effects have also been linked to the progression of a majority of human breast
cancers. The diverse biological effects of estrogens are mediated by the estrogen
receptors (ER), which are members of the nuclear receptor (NR) superfamily ' ER also
associates with different classes of coregulatory factors that have either coactivator or
corepressor function. The coactivators potentiate transcriptional activation by ER in an
agonist-, but not antagonist-dependent manner. In general, these coactivators can be
divided into five families: (1) the p160 family of proteins, including SRC-
1/ERAP160/NCoA-12°, TIF2/GRIP1/NCoA-2 %, and p/CIP/ACTR/AIB1/RAC3 "% (2) the
non-p160 members, such as ARA, RIP140, TIF1 and Trip/SUG1 ''"*; (3) the
cointegrator CBP/p300 and its associating protein p/CAF ' (4) the distinct
DRIP/TRAP/ARC complex "% and (5) the ATP-binding regulators, such as hBrm and
BRG-1 2%2'  With identification of these coactivators, the central question by which
mechanisms these multiple factors regulate ER activity remains.

Using a biochemical approach, our laboratory has identified two human ER coactivators,
ERAP160 (independently identified as SRC-1 and NCoA-1) and ERAP140 8. Although
both proteins interact with the ER hormone binding domain (HBD) in an agonist-
dependent manner, and both enhance transcriptional activation by ER, they share little
sequence and structural similarities.

AIB1 (Amplified in Breast Cancer) was discovered as a gene that is amplified in certain
breast and ovarian cancers *'°, and our lab recently identified AIB1 as a target of the
MAPK signaling pathway ?. This signaling pathway is triggered, for example, by growth
factors of the insulin-like growth factor (IGF) and epidermal growth factor (EGF) family.
These growth factors and their receptors have also been implicated in the development
and progression of breast tumors. We propose that the phosphorylation of AlIB1 by
MAPK may represent part of the molecular mechanism that integrates signals from
steroid hormones and growth factors. Furthermore, we hypothesize that AlB1
phosphorylation may contribute to the role that AIB1 plays in the development of breast
cancer.

The first goals for this proposal are to identify the sites in AIB1 that are phosphorylated
by MAPK in vitro and in vivo and to determine the importance of these phosphorylation
sites for the function of AIB1 as a transcriptional activator.

Our study will help to understand how AIB1 is modulated by MAPK. This may help to
determine how AIB1 may be involved in the development of breast cancer, which is the
most common cancer among women and the second leading cause of cancer deaths
among women in U.S.A.




Body

An 864 amino acid domain of AIB1 responds maximally to MAPK in vivo. As
mentioned in the introduction, our lab previously mapped the region of AIB1 that is
functionally responsive to MAPK. Using transient transfection assays using several AlB1
deletion mutants expressed as GAL4 fusion proteins, the highest response to MAPK
signaling was obtained with the mutant GAL4-AIB1 (aa 556-1420), further on called
fragment 12. This mutant contains a regulatory domain responsible for ER interaction
and activation domains AD1 and AD2 (Fig.1).
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Figure 1. AIB1 Structure and regulation by MAPK. Fragment 12 showed maximum induction in
transient transfection of COS cells.

In vitro phosphorylation of AIB1 by MAPK is restricted to the AIB1 regulatory
domain. To investigate whether AIB1 is a direct target of MAPK phosphorylation, or
whether the observed functional effect of MAPK on AIB1 occurs in an indirect manner,
two AIB1 fragments were used for an in vitro phosphorylation assay. The two fragments,
fragment 12 (aa 556-1420) and fragment 3 (aa 980-1131) were generated as GST
fusion proteins, in the vector pGEX-4T-1. These deletion mutants were sequenced to
ensure that no mutations or undesired deletions were introduced. The proteins were
expressed in E.coli, bound to GST beads and MAPK assays were performed using [y-
2p] ATP and the MAPK family member Erk2 as kinase. Myelin B protein was used as
positive control and GST beads alone as negative control. Bands were analyzed by SDS
gel electrophoresis and autoradiography. The experiments were carried out 4 times with
similar results.

Fragment 12 was strongly phosphorylated, almost as strong as the positive control (Fig.
2a). In contrast, fragment 3 showed very little phosphorylation even though fragment 3
showed better expression in the loading control (Fig. 2b). These results indicate that
AlB1 phosphorylation by MAPK is restricted to the regulatory domain within fragment 12.
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Figure 2. AIB1 phosphorylation by Erk2. a) Autoradiography of AlB1 in vitro phosphorylation.
Fragment 3 and 12 were generated as GST fusion proteins. In vitro phosphorylation was
performed using Erk2 as kinase. b) Coomassie stain of SDS-PAGE gel from a) as loading

control.

Precise mapping of AlB1 phosphorylation sites in vitro.

Based on these results the amino acid sequence of fragment 12 was examined for the
presence of consensus phosphorylation sites for MAP kinase (PXX(S/T)P) and 7
potential phosphorylation sites termed a-g, see Fig 3) were found. Of note, some of
these sites but not all are conserved in Src1 and/or TIF2 2* (see Fig. 3). The seven
sites were targeted by site directed mutagenesis to determine the contribution of these
sites for the whole phosphorylation pattern of AIB1 by MAPK. All point mutations were
generated as Serine to Alanine mutations in the pGEX-4T-1 vector using a Stratagene
mutagenesis kit. In addition to the point mutations, three internal deletions were
generated to eliminate several phosphorylation sites at once (Fig.3).
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Figure 3. Mutational analysis of potential MAPK sites in AIB1 regulatory domain

After sequencing all the mutants in order to ensure that no undesired mutations were
introduced, protein from all mutants was produced in E.coli. Once the protein products
were bound to GST beads in vitro phosphorylation assays were carried out using Erk2




as kinase (Fig. 4). The deletion or mutation of sites a, b, ¢ did not result in a significant
change of signal intensity, as compared to the phosphorylation of wt AIB1 fragment 12
(Fig. 4). In sharp contrast, deletion of sites d, e, f or mutation of sites e and d showed
strongly reduced phosphorylation. Site e seems to be the preferred site for
phosphorylation by MAPK, since less protein was loaded as compared to d as seen in
the Coomassie staining (Fig. 4 lower panel). Altogether, we conclude that MAPK
phosphorylates AIB 1 predominantly on sites d, e, f, or g, while a,b,c are clearly far less
involved in phosphorylation.

As a next step, we will investigate the relevance of all of these phosphorylation sites for
the coactivator function of AIB1 in vivo. We expect to be able to correlate in vitro
phosphorylation by MAPK with in vivo responsiveness of AIB1 to MAPK. This would
represent the definitive proof that the modulation of AIB1 function by MAPK is the result
of direct phosphorylation of AIB1 by MAPK.

All of the phosphorylation mutants will be generated as GAL4 fusion constructs and
examined in a transient transfection assay for their ability to respond to MAPK, in
analogy to previously published experiments?.
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Figure 4. In vitro phosphorylation of AIB1 internal deletions and point mutations by MAPK (Erk2).
Upper panel autoradiography and lower panel Coomassie staining of the same SDS-PAGE gel.

Key Research Accomplishments

e The regions of AlIB1 phosphorylated by MAPK in vitro were mapped, using deletion
mutants of AlB1.

e Phosphorylation of AIB1 by MAPK in vitro was found to be restricted to the AlIB1
regulatory domain.

¢ The precise amino acids within the AlB1 regulatory domain that are phosphorylate by
MAPK in vitro were identified.




Conclusions

We found that most of the AIB1 phosphorylation by MAPK occurs within the regulatory
domain of AIB1. This result is consistent with our previous data, indicating that this
domain is also required for the maximal induction of AIB1 coactivator function by MAPK,
in vivo. Furthermore, our analysis of point mutations of the 7 putative MAPK consensus
sites in this region indicates that the in vitro phosphorylation of AIB1 fragment 12 by
MAPK is a specific effect that occurs only at a subset of these sites. A functional
analysis of these mutations as GAL4 fusion constructs in vivo in cell lines should be able
to confirm the biological significance of these results and establish AIB1 as a target of
growth factor signaling. Together with the coactivator function of AIB1, this would
represent further evidence of a causative role of AIB1 in breast cancer.
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